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In the last years different studies have revealed the usefulness of a microcanonical analysis of finite systems
when dealing with phase transitions. In this approach the quantities of interest are exclusively expressed as
derivatives of the entrop$=In 2 where() is the density of states. Obviously, the density of states has to be
known with very high accuracy for this kind of analysis. Important progress has been achieved recently in the
computation of the density of states of classical systems, as new types of algorithms have been developed. Here
we extend one of these methods, originally formulated for systems with discrete degrees of freedom, to
systems with continuous degrees of freedom. As an application we compute the density of states of the
three-dimensionaKY model and demonstrate that critical quantities can directly be determined from the
density of states of finite systems in cases where the degrees of freedom take continuous values.
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I. INTRODUCTION In order to overcome these serious objections against the

In the microcanonical treatment of a finite system themlcrocanqnlcal way of :_;malyzmg critical phenome_na, we
main quantity of interest is the specific entrogig,m) as a have decided to de’germme the entropy of a classical spin
function of the energye and of the order parameten [1]. system where the spins take on continuous \./alues.. Of course,
The latter is given by the magnetization in the case of a{here the entropg(e,m) is acpntlnuous fun_ct|on of |t_s argu-
magnet. Recent investigations of finite-classical systems witf'€Nts. The system chosen is ¥ model ind=3 dimen-
discrete degrees of freedom undergoing a phase transition oS Which undergoes a second-order phase transition.
the infinite-volume limit have revealed that the microcanoni- !N recent years d'ﬁefer_‘t numerical m_ethods have been
cally defined spontaneous magnetizatiog(e) is zero for p_roposed for the computation of the _den5|ty (_)f states_o_f clas-
energies larger than a certain eneggyand rises steeply with sical .models_[3,6—q. Here we .conS|der a hlghly efficient

. . algorithm which has been applied to several discrete models
a power-law behavior for energies smaller tre@ri2,3]. In-

. . o , . such as, e.g., the two- and three-dimensional Ising models
terestingly, the corresponding susceptibility, being directly, 3], the three-states Potts modg,10], the vector Potts

related to the curvature of the entropy surface, dive_rges odel with four state$4], or the voter modef11]. For the
e=¢;. It has to be noted that the exponents governing theomputation of the density of states of systems with continu-
power-law behavior of the different quantities in the vicinity oys degrees of freedom we have to modify this algorithm.
of e, take on the classical mean-field values for all system The outline of the paper is the following. In Sec. Il we
sizes smaller than infinitg4]. The true nonclassical expo- generalize the numerical method presentefBinto models
nents of the infinite system can, however, be determinegith continuous variables. This method yields the transition
from a microcanonical scaling analy$is]. Whether such a variables which permit the construction of the entropy sur-
behavior with a sharp onset of the order parameter and face. It is important to note that transition variables can also
diverging susceptibility is termed a “phase transition in thebe obtained when using other algorithms such as, for ex-
microcanonical ensemble” or not is a semantic question andimple, the Wang-Landau methf@l. Therefore our method
as such, of lesser importance than the question if there reallpr deriving the entropy from these quantities can be applied
exists a point with a true divergence already for a finite sysvery generally. Data obtained in this way for the three-
tem. This has frequently been challenged with the reasonindimensionaXY model are analyzed microcanonically in Sec.
that for a discrete system such as, e.g., the Ising model th&- This enables us to determine critical exponents in sys-
arguments of the entropy assume only discrete values. For 48Ms Wwith continuous variables directly from the density of
Ising system with nearest-neighbor interactions on atates, either by extrapolating effective exponents or from a
d-dimensional hypercubic lattice with linear extensian m|crocanon!cal finite-size scaling ansatz. Section IV gives
these values are,=E,/N and m=M /N with E,=4kJ and ©OUr conclusions.

M,=2I, wherek andl are integers] is the coupling constant, II. COMPUTATION OF THE MICROCANONICAL

andN=LY is the number of spins in the system. Only in the ENTROPY

limit of infinite system size do the ratios of differences be- - )

come equal to the derivativelsvith respect toe and m) A. Transition variables

needed for the calculation of the susceptibility and other The algorithm developed in the following allows the de-
physical quantities. termination of the density of stat¢BOS) () (and therefore
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O A /microstate times called the broad histogram equatid@i, is already

complete for discrete spin models like the Ising or Potts
<. C e models.
B Let us now focus on spin models with continuous spin
A =<l variables. As an example we discuss ¥ model[12], but
S DU the generalization to other modekuch as, for example, the
T PSR~ Heisenberg modglis straightforward. In our case both the
T - energy and magnetization have continuous values and the
(W v) (¥) magnetization is a two-dimensional vector. As the energy

function (1) is invariant under global spin rotations, it is
FIG. 1. The density of states at different macrostates, and«  sufficient for many investigations to consider only the modu-

(schematig. For a reversible mechanism the number of connectiongus m of the magnetization. This also considerably reduces
C=C(u—r)=C(r— pu) between two macrostates is the same forthe amount of resources needed for the numerical simulation
the forward and backward transitions. of the model. For the purpose of performing this simulation

we discretize the energy and the magnetization, the dis-
also of the microcanonical entropgf classical spin systems. cretized values being denoted Byand m, and call se and
In an extension of the method introduced 8], the compu-  dm, respectively, the width of the discretization. We thereby
tation of the microcanonical entropy is performed in the caseallocate all microstates with energiebetweeng— se/2 and
where the DOS is a function of continuous variables. Theé+é8e/2 and modulusm of the magnetizations between
method is exemplified for the three-dimensioxaf model  mM-3om/2 andm+ém/2 to the same macrostate denoted by
with the classical Hamiltonian u=(e,M). As the magnetisatiorm=(m;,m,) is a two-

- - dimensional vector the “volume”
H=-2§"S, 6]

G.j) V(M) = 2rmdedm (3

where the spinS, characterizing the lattice poirit of a i (€,m) space is not a constant. The DO%&, M) is derived
simple cubic lattice, is a two-dimensional vector lying on thefrom
Egir:d(;ircle. The sum in Eq(l) is over nearest-neighbor Q@) = Z(@ M)V, )

The consideration underlying our method is relativelywhere Z(g,m)=Z,. This expression also holds for other
simple. Assume at first a classical discrete spin system. Anodels beyond thXY model, where one only has to replace
macrostate of the system may for convenience be denoted lije volume(3) by the appropriate expression. It is important
©. One might think of the energg, and magnetizatiom, to note that during the simulation the spin variables as well
that characterize a macrostate or leuel(e,,m). In general, as the energy and the magnetization of the system adopt
a huge number of microstatése., of spin configurations continuous values. The discretization only concerns the
belong to a macrostate. This number is the degeneragy ~ quantities depending on the macrostates—e.g., the DOS and
of the level u. In the course of the simulation a reversible the transition probabilities.
mechanism takes the system from a microstate in a |evel As already mentioned we perform the simulation with a
a different one which belongs to another lewvelThis step is  reversible mechanism. For th€¥ model we use single spin
repeated many times. Of course, the same mechanism hasrtations of randomly selected spins and a random rotation
be applied at every update. Starting from one microstate, angle -m< ¢ <. The following description of the algo-
numberN of new microstates can be generated. The numberithm is very general and also applies to discrete spin mod-
N depends on the mechanism and on the model under comrls. Suppose that the system is in a macrostate denotéd by
sideration. andm or equivalently byu. In the next step it is attempted to

When the mechanism operates on all microstates of thbring the system into another statéy the use of the mecha-
level u, thenNZ,, new microstates can be generated. A num-nism described above. We increase the number of attempts
ber C(u— v) of these belong to the level The quantity of B(u) to leave the macrostate by one count. At the same
specific interest isw(u— v)=C(u— v)/NZ, which is the time we add one count t&(x— v) which is the number of
probability of arriving at any one of the microstates belong-attempted transitions fromx to ». In a long run the ratio
ing to the levelv when the starting point was one of the t(u— v):=T(u— v)/B(u) finally approximates the transi-
microstates of level. As the mechanism is reversible the tion probability w(x— v). It is the quantityt(x— v) which
numbers of forward and backward transitions between theve call transition variable. During the simulati®{x) and
levelsu andv are the sameC(u— »)=C(v— u); see Fig. 1. T(u— ») are updated at every attempted step. The probabil-

This then yields the expression ity of acceptance of the transition fromto » is chosen to be
Z, Wryv—pu t(v— )
Lo (2) = min(—;l . 5
Z, Wu—v) P t(u — v) ®

which allows the determination of the degeneradgdrom  This choice ofp leads to an equal number of attempig.)
the transition probabilitiesv. Equation(2), which is some-  to leave any macrostaje, if sufficiently many updates of the
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FIG. 2. The integration area at
the beginning(left figure) and af-
ter several extensiongight fig-
ure). For this sketch we supposed
that the initial point is only reach-
able from microstates inside the
grey aredleft). At later stages, the
middle of the integration area is
not changed anymorgight).

[
starting point

starting area

system are performed. This is due to the fact that now the
probabilities for an actually executed transition for both the
forward and backward directions are equal. It is worth men-

tioning that the probability of acceptance changes during th%‘vhich according to the Gaussian error propagation mini-

simulation and that it approaches its asymptotic value

w(y — ,u)_ ) ©)

p= mm(W(,bL ) ;
for very long runs.

B. Construction of the entropy surface

Suppose that a macrostaie (€, M) whose degenerad),

integration area

T nTw—pw
o T(u— v +Tr—pw)’

9)

mizes the error. Another possible choice for #)g is given
by

Oy = MIN(T(p — v); T(v — w)). (10
We checked that both choic€8) and(10) lead to microca-
nonical entropies which, within the errors, are the same.

Up to now we have tacitly assumed that the degeneracies
Z, entering the sum in Eq7) were known exactly. This is of

has not yet been determined can be reached from severaburse not the case, th&, being also affected by statistical

macrostatesy and suppose that the values of the are

errors. To reduce the errors in the entropy values we propose

known; then, with the knowledge of the transition probabili- the following iterative scheme. At the start we attribute an
ties one may calculate I, starting from one of the mac- arbitrary value IrZVO:CO to a randomly chosen macrostate

rostates withw=1",

W ’
Inz,= In((ll—_)’lf)) +Inz,,
W — ')

and one would obtain the same resul‘rZLpfor each of the

vo. Note that the choice o€, does, of course, not affect our
analysis as microcanonically defined physical quantities only
involve derivatives of the microcanonical entrof]. Fur-
thermore, if one would use the generated entropy in a ca-
nonical analysis, the consta@} would drop out when taking
canonical averages of any observable. Having chosen an ini-

statesv as a starting point. However, the simulation only tial macrostate, we perform a random walk in the parameter
yields the transition variableu— v) which are estimates Space(in our case the energy-magnetization spaaed at-

for the transition probabilitiesv(x— v). Consequently, as tribute to any visited macrostate the degeneracy, ob-
these estimates are subject to stochastic fluctuations, we ef@ined by evaluating Eq(7). Of course, in doing so, only

up with different values for IiZ,, when starting from differ-
ent macrostates.

To take this into account we propose to estimaté Jrby
the weighted average

t(v— p
In ZM:EV pw['”(ﬁ) +1In Zy], (7)

where the sum is over all macrostatesfrom which the
macrostateu can be reached. The weightg, are given by

- _g& 8
Puv SN (8)

with

macrostates which have in the past been visited at least once
can contribute to the sum in E¢7). This is repeated until
every macrostate has often been visited, typically a few thou-
sand times. When [4, has been obtained for all the mac-
rostatesu=(&,M), Eq. (4) yields the microcanonical entropy
as(settingkg=1)

S =InZ,~InV(m). (11)

It is of advantage not to integrate directly over the whole
parameter space, but to restrict the random walk at the be-
ginning to a small area around the starting poigtas shown
in Fig. 2. The area at the start must be large enough to en-
compass all the macrostates reachable from the macrostate
vo. Typically after a few thousands visits of every macrostate
inside the initial area, this integration area is increased. This
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FIG. 3. Computed entropy for the three-dimensiox3l model FIG. 4. Spontaneous magnetization of the three-dimensi¥al

with N=10° spins as a function of the modulus of the magnetizationModel as a function of the energy per spin for three different sizes.

for two different energies and two different discretizatiorse Note the sharp onset of the spontaneous magnetization at the size-

=5m=1/N (solid symbol$ and se=m=2/N (open symbols The dependent energg | . Error bars are much smaller than the sizes of

data have been obtained by simulating two different stripes centeref® Symbols. Lines are obtained by fitting the data close tao a

at the energies=-0.65 ance=-1.5. Only a few selected points are Square root13).

shown by symbols. Note that f@=-0.65 the entropy is maximal . . .

for m=0, whereas fore=—1.5 the maximum is located an  Suming. One can then restrict the determination of the tran-

=my,.(€)>0. For illustrative reasons the data have been shiftecition variables to narrow stripes restricted in the energy

vertically by adding a constant. direction, which permits a distribution of the computation on
different CPU’s. The width of our stripes was usually 25

change of integration area is performed periodically. At somg:'ts on the extensive energy scale, which corresponds to

stage we no longer update the center of the integration are
see Fig. 2.
The presented method has the advantageath&tansition

wice the maximum energy increment in a single move. On
e intensive scale the stripes are rather narfe8 x 103
for a system withL=20. Therefore the resulting entropies

variables computed in the simulation are used for the contaN be averaged over the 25 energy channels in order to

struction of the entropy. Furthermore, the iterative schemé’bta'ns(e'm) at the centee of Fhe stripe. ,

just described ensures that the error in the final result for the Having the entropy or, equivalently, the density of states

entropy is minimized. It must be noted that this method is, of2t our disposal we can use these data in different ways. Of
course, also applicable for other models, including model ourse, we can compute the canomlcal partition function from

with discrete spins, as only the correct voluMehas to be the density of states and then obtain thermal averages of the
inserted into Eq.(11). Finally, we mention that for larger Q|fferent guantities of interest as the energy, the SUSC?pthIl-

system sizes it is often of advantage to compute the entrop{s @nd so on. Here, we take a different route and directly

of stripes restricted in energy directi¢®,14]. The adaption investigate the microcanonical entrogye,m) itself. Recent

of the presented method to this restricted geometry in th&nvestigations of discrete spin systeni8,5,10,13 have
parameter space is straightforward. shown that critical exponents governing the power-law be-

havior of quantities in the vicinity of a critical point can be
determined reliably by analyzing directly the density of
states of finite systems. Here we extend this analysis to phase
The procedure outlined in the previous section has beetransitions taking place in classical spin systems with con-
applied to systems of different linear extensidnsup to  tinuous degrees of freedoft6]. This kind of approach also
L=25. For most of the runs the size of the channels has beeppses a severe test of our method of computing the entropy,
chosen to be unity on the extensive scale—i&e=om  as a microcanonical analysis requires data of extremely high
=1/N—though different discretizations have also been triedquality due to the absence of the smoothening effect of the
with no noticeable effect on the results. Ao 10 this is  Boltzmann weights.
illustrated in Fig. 3 where we show the computed entropy as Coming back to our numerical data we observe that the
a function ofm for two different fixed values of the energy entropys(e,m), as a function of the modulus of the magne-
and two different discretizations. The data obtained for thdization, shows one maximum at=0 for e=¢; and one
different discretizations perfectly agree within errors. Notemaximum atm=mg, (¢) >0 for e<e.; see Fig. 3. For a
that this is an important point as the independence of thgiven energye the DOS as a function ah exhibits an ex-
results on the bin size demonstrates that we are indeed atremely sharp maximum such that the overwhelming major-
cessing continuous properties. ity of the accessible states belongs to the valumafheres
Whereas for small systems the entrogig,m) can be has a maximum. Therefore, (e) is identified with the
computed in a single run, for larger systems the increasingpontaneous magnetization of the finite sysférb]. Figure
number of channels in energy and in the magnetization di4 shows the spontaneous magnetization for three system
rection makes the computation of the entropy very time consizes. In order to produce this plot the maximum has been

Ill. ANALYSIS OF THE ENTROPY
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FIG. 5. Pseudocritical energy, , defined by the sharp onset of FIG. 6. Effective exponents derived from the spontaneous mag-
the spontaneous magnetization, as a function of the inverse lineaetization[see Eq.(16)], as a function ofe for different system
extension 1L. The solid line results from a fit of Eq14) to the  sizes. The dashed line extrapolates the datalfeR0 with 0.15
data points, withe;..=—0.965,B=4.534, andv,=0.666. Error bars <£<0.50 to zero.
are comparable to the symbol size.

where the specific heat displays a cusp singularity with
determined for a series of stripes centered at different values 0. Therex.=x. For the three-dimensiona{Y model we
of e. Notice the sharp onset ok, (e) ate; , a behavior also have a=~-0.015[19] and consequently critical exponents
observed for discrete spin models displaying a continuou§btained in the microcanonical analysis are identical to the
phase transition in the infinite-volume linj2-5]. This onset  thermal critical exponents. We can therefore safely drop the
is accompanied by a divergence of the radial part of théndex e from now on.

microcanonically defined susceptibilift 7] For all finite system sizes the expansi@B), which is
5 valid in the vicinity ofe; , yields the classical critical expo-
JSIS nent B, =1/2 [4], but the range of validity of Eq(13
e e? shrinks to zero withL — <. Outside of this rangeng, (e)
x(em) =~ Ps P Ps \2° 12 giffers very little frommg(€) =mg,..(e) for not too small sys-
P (M) tem sizes. The critical expansion for the infinite system is
given by
This divergence is due to the fact that the curvature in the
radial direction ofm [i.e., the denominator in Eq12)] van- mg€) = Ae”, (15)

ishes ate .

Exploiting the fact that close te,| the spontaneous mag- wherees=(e;.—€e)/(e;—€;) andey=-3 is the ground-state en-
netization rises with a square-root singularigy, can be ergy per degree of freedom. Equatidb) is stricly speaking
determined with high precision from a fit of the nonzero only valid in the limite — 0. One may analyze the spontane-

values ofmg, (€) by the expression ous magnetization by looking at the energy-dependent loga-
12 rithmic derivative[3]
MgpL(€) =AL(e; L — €)%, (13
where A, ande., are adjustable parameters. The resulting _din msés)
; Bei(e) = (16)

values ofe; | are plotted in Fig. 5 as a function of L/

together with the fit function
_ Y which approaches the true critical exponghin the limit
€L = € + B(LL)™, (14) e—0. Plots which show this approach for the two- and
with the adjustable parametegs.., B, andv,. The fit yields  three-dimensional Ising systems can be foundi3ih Figure
the valuese; ..=-0.96510) and ».=0.6645) which, consid- 6 shows Bei(e) of the XY model under study for several
ering the relatively small systems we have simulated, are itattice sizes. All the graphs, of course, precipitate to zero on
good agreement with the best values found in the literature—approaching: =0 becauseng, () is finite ate=e.—i.e., for
namely,e,=-0.9884[18] and v=0.671 5%27) [19]. £=0—-but the region of constant slope aroww0.5 can be
We briefly pause to recall that in the entropy formalismused to extrapolate the datade 0. Figure 7 shows the result
considered here critical exponents are not always identical tof this extrapolation for five values of. These values
the better known thermal critical exponents. Indeed, in caseguickly come close to the expected valge 0.34852) [19].
where the specific heat is diverging at the critical pgint- Microcanonical finite-size scaling, as suggestedsh is
plying that the thermal critical exponent governing this  another way of determining critical exponents. This approach
divergence is positivey > 0) critical exponentx, appearing takes advantage of the existence of a well-defined transition
in the microcanonical analysis are related to their canonicapoint g, in finite-microcanonical systems and leads to the
counterpartx by x.=x/(1-a) [2]. This is not so in cases scaling ansatz

din(e) '’
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0T been proposed. One of the aims of this work is the generali-
e ] zation of the method presented [i8] to systems with con-
0.34 ) [} . ) ) .
I ] tinuous degrees of freedom. This method relies on the pow-
0.32 | () . erful concept of transition variables[6]. In our
implementation the actual values of the transition variables
; 0.30 i 3 i are used for the acceptance rates of a proposed move and this
= gog L J during the entire run. As a consequence all sites of the pa-
. ] rameter space are visited with the same rate.
0.26 + . With the final values of the transition variables we can
0.04 [ E ] construct the density of states using the complete informa-
T | tion contained in these variables. We have formulated this
oo L v approach in the present paper for magnetic systems, where
0 5 10 1|_5 20 25 30 the natural variables are given by energy and magnetization,

but a generalization to other situations is straightforward.
FIG. 7. Variation off3, obtained from extrapolating the effec-  With the knowledge of the density of states we can ana-
tive exponentsBq linearly as a function olL. The dashed line lyze the system under investigation in different ways. One

indicates the literature valyg=0.3485[19]. common approach is to compute the partition function and
then proceed with a canonical analysis. The good quality of
Lﬁ/umsp’L(eC’L —€) ~ W(Cleg, - o)LL), (17) our data, however, also enables us to perform a microcanoni-

cal analysis where derivatives of the entropy with respect to
energy and magnetization play a predominant role. The use-
whereW is a universal scaling function characterizing thefulness of the microcanonical analysis in the study of phase
given universality class an@ is a nonuniversal constant. It transitions has been revealed in many recent studies
is worth noting that in this approach the knowledge of the[1,3,5,10,20,21L
value of the critical energg, of the infinite system is not The theory of phase transitions is usually formulated
needed. As shown ifb] Eq. (17) yields reliable values of the within the frame of the canonical ensemble, which is based
involved critical exponents for discrete models. We show inon the partition function or on its logarithm, the free energy.
Fig. 8 that this is also the case for the continuous modeh|| the thermodynamic functions, such as, e.g., the suscepti-
discussed here. Plotting”’my, against(e. ~€)L*”, we pility, are calculated from derivatives of the free energy with
obtain the valuess/»=0.531) and 1/»=1.472) from the  yespect to the temperature and the applied fields. For all
best data collapse, in good agreement with the expected Vagnite-system sizes these derivatives remain finite, but in the
ues[19] 0.5189 and 1.4891. thermodynamic limit they may diverge at the critical point, if
a continuous phase transition occurs in the system.
In the microcanonical ensemble the analysis of phase
IV. CONCLUSIONS transitions is based on the DOS or its logarithm, the entropy
) . ) [1,4,20. It has been demonstrated for several discrete spin
In recent years impressive progress has been achieved jfodels that the abrupt onset of the order parameter and
the numerical computation of the DOS of finite-classical systhe divergence of the susceptibility occur already for systems
tems, as new and highly efficient simulation methods have,nsisting of a rather modest number of spins, albeit with the
classical values of the critical exponeh&s4].

25 " ' " ' N We have demonstrated in this work that similar features
s 2" ] are observed in systems with continuous spins: In a finite
201 ot 1 system of linear extensioh the curvature of the entro
P Y py
,_,ol“” ] surface in the magnetization direction changes sign at the
S 15} € . Nt e= i i
: - pointe=e; . Itis there where the order parameter sets in and
SE I d:'o ] where the susceptibility diverges in continuous as well as in
I : 'I:jg 1 discrete systems. Therefore for tk¥ model, wheree andm
& .loi5 1 take continuous values, the entrog(e, m) shows the same
0T, o L=17 ] behavior as for discrete spin models where it is defined only
I 1 at discrete points in the parameter space.
0.0, : 10 : 20 ' 30 Of course, numerical studies must be performed at dis-
(6.-6) L™ crete values of the variables. The distinguishing fact is that

for continuous models these values can be chosen freely,
FIG. 8. Microcanonical finite-size scaling plot for the three- such that derivatives can, in principle, be calculated from the
dimensional XY model. The valuesB/v»=0.531) and 1A/  ratios of arbitrarily small differences. The reality of a nu-
=1.472) result from the best data collapse. Error bars are compamerical study, however, sets the limits.
rable to the sizes of the symbols.
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