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In the last years different studies have revealed the usefulness of a microcanonical analysis of finite systems
when dealing with phase transitions. In this approach the quantities of interest are exclusively expressed as
derivatives of the entropyS=ln V whereV is the density of states. Obviously, the density of states has to be
known with very high accuracy for this kind of analysis. Important progress has been achieved recently in the
computation of the density of states of classical systems, as new types of algorithms have been developed. Here
we extend one of these methods, originally formulated for systems with discrete degrees of freedom, to
systems with continuous degrees of freedom. As an application we compute the density of states of the
three-dimensionalXY model and demonstrate that critical quantities can directly be determined from the
density of states of finite systems in cases where the degrees of freedom take continuous values.
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I. INTRODUCTION

In the microcanonical treatment of a finite system the
main quantity of interest is the specific entropysse,md as a
function of the energye and of the order parameterm f1g.
The latter is given by the magnetization in the case of a
magnet. Recent investigations of finite-classical systems with
discrete degrees of freedom undergoing a phase transition in
the infinite-volume limit have revealed that the microcanoni-
cally defined spontaneous magnetizationmspsed is zero for
energies larger than a certain energyec and rises steeply with
a power-law behavior for energies smaller thanec f2,3g. In-
terestingly, the corresponding susceptibility, being directly
related to the curvature of the entropy surface, diverges at
e=ec. It has to be noted that the exponents governing the
power-law behavior of the different quantities in the vicinity
of ec take on the classical mean-field values for all system
sizes smaller than infinitef4g. The true nonclassical expo-
nents of the infinite system can, however, be determined
from a microcanonical scaling analysisf5g. Whether such a
behavior with a sharp onset of the order parameter and a
diverging susceptibility is termed a “phase transition in the
microcanonical ensemble” or not is a semantic question and,
as such, of lesser importance than the question if there really
exists a point with a true divergence already for a finite sys-
tem. This has frequently been challenged with the reasoning
that for a discrete system such as, e.g., the Ising model the
arguments of the entropy assume only discrete values. For an
Ising system with nearest-neighbor interactions on a
d-dimensional hypercubic lattice with linear extensionL
these values areek=Ek/N and ml =Ml /N with Ek=4kJ and
Ml =2l, wherek andl are integers,J is the coupling constant,
andN=Ld is the number of spins in the system. Only in the
limit of infinite system size do the ratios of differences be-
come equal to the derivativesswith respect toe and md
needed for the calculation of the susceptibility and other
physical quantities.

In order to overcome these serious objections against the
microcanonical way of analyzing critical phenomena, we
have decided to determine the entropy of a classical spin
system where the spins take on continuous values. Of course,
there the entropysse,md is a continuous function of its argu-
ments. The system chosen is theXY model in d=3 dimen-
sions which undergoes a second-order phase transition.

In recent years different numerical methods have been
proposed for the computation of the density of states of clas-
sical modelsf3,6–9g. Here we consider a highly efficient
algorithm which has been applied to several discrete models
such as, e.g., the two- and three-dimensional Ising models
f3g, the three-states Potts modelf4,10g, the vector Potts
model with four statesf4g, or the voter modelf11g. For the
computation of the density of states of systems with continu-
ous degrees of freedom we have to modify this algorithm.

The outline of the paper is the following. In Sec. II we
generalize the numerical method presented inf3g to models
with continuous variables. This method yields the transition
variables which permit the construction of the entropy sur-
face. It is important to note that transition variables can also
be obtained when using other algorithms such as, for ex-
ample, the Wang-Landau methodf9g. Therefore our method
for deriving the entropy from these quantities can be applied
very generally. Data obtained in this way for the three-
dimensionalXY model are analyzed microcanonically in Sec.
III. This enables us to determine critical exponents in sys-
tems with continuous variables directly from the density of
states, either by extrapolating effective exponents or from a
microcanonical finite-size scaling ansatz. Section IV gives
our conclusions.

II. COMPUTATION OF THE MICROCANONICAL
ENTROPY

A. Transition variables

The algorithm developed in the following allows the de-
termination of the density of statessDOSd V sand therefore
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also of the microcanonical entropyd of classical spin systems.
In an extension of the method introduced inf3g, the compu-
tation of the microcanonical entropy is performed in the case
where the DOS is a function of continuous variables. The
method is exemplified for the three-dimensionalXY model
with the classical Hamiltonian

H = − o
ki,jl

SW i ·SW j , s1d

where the spinSW i, characterizing the lattice pointi of a
simple cubic lattice, is a two-dimensional vector lying on the
unit circle. The sum in Eq.s1d is over nearest-neighbor
bonds.

The consideration underlying our method is relatively
simple. Assume at first a classical discrete spin system. A
macrostate of the system may for convenience be denoted by
m. One might think of the energyek and magnetizationml
that characterize a macrostate or levelm=sek,mld. In general,
a huge number of microstatessi.e., of spin configurationsd
belong to a macrostatem. This number is the degeneracyZm

of the levelm. In the course of the simulation a reversible
mechanism takes the system from a microstate in a levelm to
a different one which belongs to another leveln. This step is
repeated many times. Of course, the same mechanism has to
be applied at every update. Starting from one microstate, a
numberN of new microstates can be generated. The number
N depends on the mechanism and on the model under con-
sideration.

When the mechanism operates on all microstates of the
level m, thenNZm new microstates can be generated. A num-
ber Csm→nd of these belong to the leveln. The quantity of
specific interest iswsm→nd=Csm→nd /NZm which is the
probability of arriving at any one of the microstates belong-
ing to the leveln when the starting point was one of the
microstates of levelm. As the mechanism is reversible the
numbers of forward and backward transitions between the
levelsm andn are the same:Csm→nd=Csn→md; see Fig. 1.
This then yields the expression

Zm

Zn

=
wsn → md
wsm → nd

, s2d

which allows the determination of the degeneraciesZm from
the transition probabilitiesw. Equations2d, which is some-

times called the broad histogram equationf6g, is already
complete for discrete spin models like the Ising or Potts
models.

Let us now focus on spin models with continuous spin
variables. As an example we discuss theXY modelf12g, but
the generalization to other modelsssuch as, for example, the
Heisenberg modeld is straightforward. In our case both the
energy and magnetization have continuous values and the
magnetization is a two-dimensional vector. As the energy
function s1d is invariant under global spin rotations, it is
sufficient for many investigations to consider only the modu-
lus m of the magnetization. This also considerably reduces
the amount of resources needed for the numerical simulation
of the model. For the purpose of performing this simulation
we discretize the energy and the magnetization, the dis-
cretized values being denoted byê and m̂, and callde and
dm, respectively, the width of the discretization. We thereby
allocate all microstates with energiese betweenê−de/2 and
ê+de/2 and modulusm of the magnetizations between
m̂−dm/2 andm̂+dm/2 to the same macrostate denoted by
m=sê,m̂d. As the magnetisationm=sm1,m2d is a two-
dimensional vector the “volume”

Vsm̂d = 2pm̂dedm s3d

in se,md space is not a constant. The DOSVsê,m̂d is derived
from

Vsê,m̂d = Zsê,m̂d/Vsm̂d, s4d

where Zsê,m̂d;Zm. This expression also holds for other
models beyond theXY model, where one only has to replace
the volumes3d by the appropriate expression. It is important
to note that during the simulation the spin variables as well
as the energy and the magnetization of the system adopt
continuous values. The discretization only concerns the
quantities depending on the macrostates—e.g., the DOS and
the transition probabilities.

As already mentioned we perform the simulation with a
reversible mechanism. For theXY model we use single spin
rotations of randomly selected spins and a random rotation
angle −pøw,p. The following description of the algo-
rithm is very general and also applies to discrete spin mod-
els. Suppose that the system is in a macrostate denoted byê
andm̂ or equivalently bym. In the next step it is attempted to
bring the system into another staten by the use of the mecha-
nism described above. We increase the number of attempts
Bsmd to leave the macrostatem by one count. At the same
time we add one count toTsm→nd which is the number of
attempted transitions fromm to n. In a long run the ratio
tsm→ndªTsm→nd /Bsmd finally approximates the transi-
tion probability wsm→nd. It is the quantitytsm→nd which
we call transition variable. During the simulationBsmd and
Tsm→nd are updated at every attempted step. The probabil-
ity of acceptance of the transition fromm to n is chosen to be

pª minS tsn → md
tsm → nd

;1D . s5d

This choice ofp leads to an equal number of attemptsBsmd
to leave any macrostatem, if sufficiently many updates of the

FIG. 1. The density of states at different macrostatesm, n, andk
sschematicd. For a reversible mechanism the number of connections
C=Csm→nd=Csn→md between two macrostates is the same for
the forward and backward transitions.
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system are performed. This is due to the fact that now the
probabilities for an actually executed transition for both the
forward and backward directions are equal. It is worth men-
tioning that the probability of acceptance changes during the
simulation and that it approaches its asymptotic value

p̃ = minSwsn → md
wsm → nd

;1D s6d

for very long runs.

B. Construction of the entropy surface

Suppose that a macrostatem=sê,m̂d whose degeneracyZm

has not yet been determined can be reached from several
macrostatesn and suppose that the values of theZn are
known; then, with the knowledge of the transition probabili-
ties one may calculate lnZm starting from one of the mac-
rostates withn=n8,

ln Zm = lnSwsn8 → md
wsm → n8d

D + ln Zn8,

and one would obtain the same result lnZm for each of the
statesn as a starting point. However, the simulation only
yields the transition variablestsm→nd which are estimates
for the transition probabilitieswsm→nd. Consequently, as
these estimates are subject to stochastic fluctuations, we end
up with different values for lnZm when starting from differ-
ent macrostatesn.

To take this into account we propose to estimate lnZm by
the weighted average

ln Zm = o
n

pmnFlnS tsn → md
tsm → ndD + ln ZnG , s7d

where the sum is over all macrostatesn from which the
macrostatem can be reached. The weightspmn are given by

pmn =
gmn

okgmk

, s8d

with

gmn =
Tsm → ndTsn → md

Tsm → nd + Tsn → md
, s9d

which according to the Gaussian error propagation mini-
mizes the error. Another possible choice for thegmn is given
by

gmn = min„Tsm → nd;Tsn → md…. s10d

We checked that both choicess9d and s10d lead to microca-
nonical entropies which, within the errors, are the same.

Up to now we have tacitly assumed that the degeneracies
Zn entering the sum in Eq.s7d were known exactly. This is of
course not the case, theZn being also affected by statistical
errors. To reduce the errors in the entropy values we propose
the following iterative scheme. At the start we attribute an
arbitrary value lnZn0

=C0 to a randomly chosen macrostate
n0. Note that the choice ofC0 does, of course, not affect our
analysis as microcanonically defined physical quantities only
involve derivatives of the microcanonical entropyf1g. Fur-
thermore, if one would use the generated entropy in a ca-
nonical analysis, the constantC0 would drop out when taking
canonical averages of any observable. Having chosen an ini-
tial macrostate, we perform a random walk in the parameter
spacesin our case the energy-magnetization spaced and at-
tribute to any visited macrostatem the degeneracyZm ob-
tained by evaluating Eq.s7d. Of course, in doing so, only
macrostates which have in the past been visited at least once
can contribute to the sum in Eq.s7d. This is repeated until
every macrostate has often been visited, typically a few thou-
sand times. When lnZm has been obtained for all the mac-
rostatesm=sê,m̂d, Eq. s4d yields the microcanonical entropy
as ssettingkB=1d

Ssmd = ln Zm − ln Vsm̂d. s11d

It is of advantage not to integrate directly over the whole
parameter space, but to restrict the random walk at the be-
ginning to a small area around the starting pointn0, as shown
in Fig. 2. The area at the start must be large enough to en-
compass all the macrostates reachable from the macrostate
n0. Typically after a few thousands visits of every macrostate
inside the initial area, this integration area is increased. This

FIG. 2. The integration area at
the beginningsleft figured and af-
ter several extensionssright fig-
ured. For this sketch we supposed
that the initial point is only reach-
able from microstates inside the
grey areasleftd. At later stages, the
middle of the integration area is
not changed anymoresrightd.

DENSITY OF STATES OF CLASSICAL SPIN SYSTEMS… PHYSICAL REVIEW E 71, 056705s2005d

056705-3



change of integration area is performed periodically. At some
stage we no longer update the center of the integration area;
see Fig. 2.

The presented method has the advantage thatall transition
variables computed in the simulation are used for the con-
struction of the entropy. Furthermore, the iterative scheme
just described ensures that the error in the final result for the
entropy is minimized. It must be noted that this method is, of
course, also applicable for other models, including models
with discrete spins, as only the correct volumeV has to be
inserted into Eq.s11d. Finally, we mention that for larger
system sizes it is often of advantage to compute the entropy
of stripes restricted in energy directionf3,14g. The adaption
of the presented method to this restricted geometry in the
parameter space is straightforward.

III. ANALYSIS OF THE ENTROPY

The procedure outlined in the previous section has been
applied to systems of different linear extensionsL up to
L=25. For most of the runs the size of the channels has been
chosen to be unity on the extensive scale—i.e.,de=dm
=1/N—though different discretizations have also been tried
with no noticeable effect on the results. ForL=10 this is
illustrated in Fig. 3 where we show the computed entropy as
a function ofm for two different fixed values of the energy
and two different discretizations. The data obtained for the
different discretizations perfectly agree within errors. Note
that this is an important point as the independence of the
results on the bin size demonstrates that we are indeed ac-
cessing continuous properties.

Whereas for small systems the entropysse,md can be
computed in a single run, for larger systems the increasing
number of channels in energy and in the magnetization di-
rection makes the computation of the entropy very time con-

suming. One can then restrict the determination of the tran-
sition variables to narrow stripes restricted in the energy
direction, which permits a distribution of the computation on
different CPU’s. The width of our stripes was usually 25
units on the extensive energy scale, which corresponds to
twice the maximum energy increment in a single move. On
the intensive scale the stripes are rather narrows<3310−3d
for a system withL=20. Therefore the resulting entropies
can be averaged over the 25 energy channels in order to
obtainsse,md at the centere of the stripe.

Having the entropy or, equivalently, the density of states
at our disposal we can use these data in different ways. Of
course, we can compute the canonical partition function from
the density of states and then obtain thermal averages of the
different quantities of interest as the energy, the susceptibil-
ity, and so on. Here, we take a different route and directly
investigate the microcanonical entropysse,md itself. Recent
investigations of discrete spin systemsf3,5,10,15g have
shown that critical exponents governing the power-law be-
havior of quantities in the vicinity of a critical point can be
determined reliably by analyzing directly the density of
states of finite systems. Here we extend this analysis to phase
transitions taking place in classical spin systems with con-
tinuous degrees of freedomf16g. This kind of approach also
poses a severe test of our method of computing the entropy,
as a microcanonical analysis requires data of extremely high
quality due to the absence of the smoothening effect of the
Boltzmann weights.

Coming back to our numerical data we observe that the
entropysse,md, as a function of the modulus of the magne-
tization, shows one maximum atm=0 for eùec,L and one
maximum atm=msp,Lsed.0 for e,ec,L; see Fig. 3. For a
given energye the DOS as a function ofm exhibits an ex-
tremely sharp maximum such that the overwhelming major-
ity of the accessible states belongs to the value ofm wheres
has a maximum. Thereforemsp,Lsed is identified with the
spontaneous magnetization of the finite systemf2–5g. Figure
4 shows the spontaneous magnetization for three system
sizes. In order to produce this plot the maximum has been

FIG. 3. Computed entropy for the three-dimensionalXY model
with N=103 spins as a function of the modulus of the magnetization
for two different energies and two different discretizations:de
=dm=1/N ssolid symbolsd andde=dm=2/N sopen symbolsd. The
data have been obtained by simulating two different stripes centered
at the energiese=−0.65 ande=−1.5. Only a few selected points are
shown by symbols. Note that fore=−0.65 the entropy is maximal
for m=0, whereas fore=−1.5 the maximum is located atm
=msp,Lsed.0. For illustrative reasons the data have been shifted
vertically by adding a constant.

FIG. 4. Spontaneous magnetization of the three-dimensionalXY
model as a function of the energy per spin for three different sizes.
Note the sharp onset of the spontaneous magnetization at the size-
dependent energyec,L. Error bars are much smaller than the sizes of
the symbols. Lines are obtained by fitting the data close toec,L to a
square roots13d.
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determined for a series of stripes centered at different values
of e. Notice the sharp onset ofmsp,Lsed atec,L, a behavior also
observed for discrete spin models displaying a continuous
phase transition in the infinite-volume limitf2–5g. This onset
is accompanied by a divergence of the radial part of the
microcanonically defined susceptibilityf17g

xse,md = −

]s

]e

]2s

]e2

]2s

]e2

]2s

]m2 − S ]2s

]e]m
D2 . s12d

This divergence is due to the fact that the curvature in the
radial direction ofm fi.e., the denominator in Eq.s12dg van-
ishes atec,L.

Exploiting the fact that close toec,L the spontaneous mag-
netization rises with a square-root singularity,ec,L can be
determined with high precision from a fit of the nonzero
values ofmsp,Lsed by the expression

msp,Lsed = ALsec,L − ed1/2, s13d

whereAL and ec,L are adjustable parameters. The resulting
values of ec,L are plotted in Fig. 5 as a function of 1/L
together with the fit function

ec,L = ec,` + Bs1/Ldne, s14d

with the adjustable parametersec,`, B, andne. The fit yields
the valuesec,`=−0.965s10d andne=0.666s5d which, consid-
ering the relatively small systems we have simulated, are in
good agreement with the best values found in the literature—
namely,ec=−0.9884f18g andn=0.671 55s27d f19g.

We briefly pause to recall that in the entropy formalism
considered here critical exponents are not always identical to
the better known thermal critical exponents. Indeed, in cases
where the specific heat is diverging at the critical pointsim-
plying that the thermal critical exponenta governing this
divergence is positive,a.0d critical exponentsxe appearing
in the microcanonical analysis are related to their canonical
counterpartsx by xe=x/ s1−ad f2g. This is not so in cases

where the specific heat displays a cusp singularity witha
,0. Therexe=x. For the three-dimensionalXY model we
have a<−0.015 f19g and consequently critical exponents
obtained in the microcanonical analysis are identical to the
thermal critical exponents. We can therefore safely drop the
index e from now on.

For all finite system sizes the expansions13d, which is
valid in the vicinity ofec,L, yields the classical critical expo-
nent bc,L=1/2 f4g, but the range of validity of Eq.s13d
shrinks to zero withL→`. Outside of this rangemsp,Lsed
differs very little frommspsed=msp,`sed for not too small sys-
tem sizes. The critical expansion for the infinite system is
given by

mspsed = A«b, s15d

where«=sec−ed / sec−egd andeg=−3 is the ground-state en-
ergy per degree of freedom. Equations15d is stricly speaking
only valid in the limit«→0. One may analyze the spontane-
ous magnetization by looking at the energy-dependent loga-
rithmic derivativef3g

bef fs«d =
d ln msps«d

d lns«d
, s16d

which approaches the true critical exponentb in the limit
«→0. Plots which show this approach for the two- and
three-dimensional Ising systems can be found inf3g. Figure
6 showsbef fs«d of the XY model under study for several
lattice sizes. All the graphs, of course, precipitate to zero on
approaching«=0 becausemsp,Lsed is finite ate=ec—i.e., for
«=0—but the region of constant slope around«=0.5 can be
used to extrapolate the data to«=0. Figure 7 shows the result
of this extrapolation for five values ofL. These values
quickly come close to the expected valueb=0.3485s2d f19g.

Microcanonical finite-size scaling, as suggested inf5g, is
another way of determining critical exponents. This approach
takes advantage of the existence of a well-defined transition
point ec,L in finite-microcanonical systems and leads to the
scaling ansatz

FIG. 5. Pseudocritical energyec,L, defined by the sharp onset of
the spontaneous magnetization, as a function of the inverse linear
extension 1/L. The solid line results from a fit of Eq.s14d to the
data points, withec,`=−0.965,B=4.534, andne=0.666. Error bars
are comparable to the symbol size.

FIG. 6. Effective exponents derived from the spontaneous mag-
netization fsee Eq.s16dg, as a function of« for different system
sizes. The dashed line extrapolates the data forL=20 with 0.15
,«,0.50 to zero.
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Lb/nmsp,Lsec,L − ed , W„Csec,L − edL1/n
…, s17d

where W is a universal scaling function characterizing the
given universality class andC is a nonuniversal constant. It
is worth noting that in this approach the knowledge of the
value of the critical energyec of the infinite system is not
needed. As shown inf5g Eq. s17d yields reliable values of the
involved critical exponents for discrete models. We show in
Fig. 8 that this is also the case for the continuous model
discussed here. PlottingLb/nmsp,L against sec,L−edL1/n, we
obtain the valuesb /n=0.53s1d and 1/n=1.47s2d from the
best data collapse, in good agreement with the expected val-
uesf19g 0.5189 and 1.4891.

IV. CONCLUSIONS

In recent years impressive progress has been achieved in
the numerical computation of the DOS of finite-classical sys-
tems, as new and highly efficient simulation methods have

been proposed. One of the aims of this work is the generali-
zation of the method presented inf3g to systems with con-
tinuous degrees of freedom. This method relies on the pow-
erful concept of transition variablesf6g. In our
implementation the actual values of the transition variables
are used for the acceptance rates of a proposed move and this
during the entire run. As a consequence all sites of the pa-
rameter space are visited with the same rate.

With the final values of the transition variables we can
construct the density of states using the complete informa-
tion contained in these variables. We have formulated this
approach in the present paper for magnetic systems, where
the natural variables are given by energy and magnetization,
but a generalization to other situations is straightforward.

With the knowledge of the density of states we can ana-
lyze the system under investigation in different ways. One
common approach is to compute the partition function and
then proceed with a canonical analysis. The good quality of
our data, however, also enables us to perform a microcanoni-
cal analysis where derivatives of the entropy with respect to
energy and magnetization play a predominant role. The use-
fulness of the microcanonical analysis in the study of phase
transitions has been revealed in many recent studies
f1,3,5,10,20,21g.

The theory of phase transitions is usually formulated
within the frame of the canonical ensemble, which is based
on the partition function or on its logarithm, the free energy.
All the thermodynamic functions, such as, e.g., the suscepti-
bility, are calculated from derivatives of the free energy with
respect to the temperature and the applied fields. For all
finite-system sizes these derivatives remain finite, but in the
thermodynamic limit they may diverge at the critical point, if
a continuous phase transition occurs in the system.

In the microcanonical ensemble the analysis of phase
transitions is based on the DOS or its logarithm, the entropy
f1,4,20g. It has been demonstrated for several discrete spin
models that the abrupt onset of the order parameter atec and
the divergence of the susceptibility occur already for systems
consisting of a rather modest number of spins, albeit with the
classical values of the critical exponentsf2,4g.

We have demonstrated in this work that similar features
are observed in systems with continuous spins: In a finite
system of linear extensionL the curvature of the entropy
surface in the magnetization direction changes sign at the
point e=ec,L. It is there where the order parameter sets in and
where the susceptibility diverges in continuous as well as in
discrete systems. Therefore for theXY model, wheree andm
take continuous values, the entropysse,md shows the same
behavior as for discrete spin models where it is defined only
at discrete points in the parameter space.

Of course, numerical studies must be performed at dis-
crete values of the variables. The distinguishing fact is that
for continuous models these values can be chosen freely,
such that derivatives can, in principle, be calculated from the
ratios of arbitrarily small differences. The reality of a nu-
merical study, however, sets the limits.

FIG. 7. Variation ofb«,L obtained from extrapolating the effec-
tive exponentsbef f linearly as a function ofL. The dashed line
indicates the literature valueb=0.3485f19g.

FIG. 8. Microcanonical finite-size scaling plot for the three-
dimensional XY model. The valuesb /n=0.53s1d and 1/n
=1.47s2d result from the best data collapse. Error bars are compa-
rable to the sizes of the symbols.
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As a final application we have demonstrated that in sys-
tems with continuous degrees of freedom critical exponents
can in principle be determined directly from the density of
states, along the same lines as in discrete modelsf3,5,10,15g.
In particular, we obtain very good estimates ofn andb with
regard to the modest system sizes used in this study.
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